1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
#include <limits.h>
#include <float.h>
#include <stdint.h>
#include <math.h>
#include "vecmath.h"
#include "picture.h"
#define EPSILON 0.001
typedef enum {
kAmbientLight,
kPointLight,
kDirectionalLight,
} LightType;
typedef struct {
LightType type;
float intensity;
Vec3f vec;
} Light;
Vec3f screen_proj(int width, int height, Vec2i sp) {
Vec3f ret;
float maxlen = width > height ? width : height;
ret.z = 1.0;
ret.x = (sp.x - width / 2.0) / maxlen;
ret.y = (-sp.y + height / 2.0) / maxlen;
return ret;
}
typedef struct {
Vec3f center;
float r;
Color color;
float specular;
float reflective;
} Ball;
Ball balls[] = {
{
.center = {.x = 0, .y = -1, .z = 3},
.r = 1,
.specular = 500,
.reflective = 0.2,
},
{
.center = {.x = 2, .y = 0, .z = 4},
.r = 1,
.specular = 500,
.reflective = 0.3,
},
{
.center = {.x = -2, .y = 0, .z = 4},
.r = 1,
.specular = 10,
.reflective = 0.4,
},
{
.center = {0, -5001, 0},
.r = 5000,
.specular = 1000,
.reflective = 0.5,
},
};
Light lights[] = {
{
.type = kAmbientLight,
.intensity = 0.2,
},
{
.type = kPointLight,
.intensity = 0.6,
.vec = {2.0, 1.0, 0.0},
},
{
.type = kDirectionalLight,
.intensity = 0.2,
.vec = {1.0, 4.0, 4.0}
},
};
Color gBackgroupColor = {0,0,0};
void init_color() {
balls[0].color = icolor(0x95e1d3);
balls[1].color = icolor(0xfce38a);
balls[2].color = icolor(0xf38181);
balls[3].color = icolor(0xeaffd0);
// gBackgroupColor = icolor(0xeaeaea);
}
float ball_intersect(Vec3f start, Vec3f ray, Ball *ball) {
Vec3f sc = vec3f_sub(start, ball->center);
float a = vec3f_dot(ray, ray);
float b = 2 * vec3f_dot(sc, ray);
float c = vec3f_dot(sc, sc) - ball->r * ball->r;
float delta = b*b - 4*a*c;
if (delta < 0) {
return -1;
}
float t1 = (-b + sqrt(delta)) / (2*a);
float t2 = (-b - sqrt(delta)) / (2*a);
return t1 < t2 ? t1 : t2;
}
bool is_in_shadow(Vec3f pos, Light light) {
Vec3f ray;
if (light.type == kPointLight) {
ray = vec3f_sub(light.vec, pos);
} else if (light.type == kDirectionalLight) {
ray = light.vec;
} else {
return false;
}
float tmin = FLT_MAX;
for (int i = 0; i < sizeof(balls) / sizeof(Ball); i++) {
float t = ball_intersect(pos, ray, &balls[i]);
if (t > EPSILON && t < tmin) tmin = t;
}
if (light.type == kPointLight) {
return tmin < 1;
}
if (light.type == kDirectionalLight) {
return tmin != FLT_MAX;
}
return false;
}
Vec3f reflection(Vec3f rayin, Vec3f norm) {
rayin = vec3f_normalize(vec3f_neg(rayin));
return vec3f_sub(vec3f_mul(2 * vec3f_dot(norm, rayin), norm), rayin);
}
float specular_coeff(Vec3f l, Vec3f n, Vec3f v, float s) {
Vec3f r = reflection(vec3f_neg(l), n);
v = vec3f_normalize(v);
float prod = vec3f_dot(r, vec3f_neg(v));
if (prod < 0) return 0;
else return pow(vec3f_dot(r, vec3f_neg(v)), s);
}
Color ball_surface_color(Ball *ball, Vec3f point, Vec3f view) {
Vec3f norm = vec3f_normalize(vec3f_sub(point, ball->center));
float amp = 0;
for (int i = 0; i < sizeof(lights) / sizeof(Light); i++) {
if (lights[i].type == kAmbientLight) {
amp += lights[i].intensity;
} else if (lights[i].type == kPointLight) {
if (is_in_shadow(point, lights[i])) continue;
Vec3f l = vec3f_normalize(vec3f_sub(lights[i].vec, point));
float prod = vec3f_dot(l, norm);
if (prod > 0) amp += prod * lights[i].intensity;
if (ball->specular > 0) {
amp += specular_coeff(l, norm, view, ball->specular)
* lights[i].intensity;
}
} else if (lights[i].type == kDirectionalLight) {
if (is_in_shadow(point, lights[i])) continue;
Vec3f l = vec3f_normalize(lights[i].vec);
float prod = vec3f_dot(l, norm);
if (prod > 0) amp += prod * lights[i].intensity;
if (ball->specular > 0) {
amp += specular_coeff(l, norm, view, ball->specular)
* lights[i].intensity;
}
}
}
return (Color){
ball->color.r * amp,
ball->color.g * amp,
ball->color.b * amp
};
}
#define MAX_TRACE_DEPTH 3
Vec3f ball_norm(Vec3f center, Vec3f pos) {
return vec3f_normalize(vec3f_sub(pos, center));
}
Color calc_color(Vec3f start, Vec3f v, float tmin, float tmax, int trace_depth) {
int nearest_idx = -1;
float t_nearest = FLT_MAX;
for (int i = 0; i < sizeof(balls) / sizeof(Ball); i++) {
float t = ball_intersect(start, v, &balls[i]);
if (t < t_nearest && t < tmax && t > tmin) {
t_nearest = t;
nearest_idx = i;
}
}
if (nearest_idx >= 0) {
Ball hit = balls[nearest_idx];
Vec3f intersection = vec3f_add(start, vec3f_mul(t_nearest, v));
Color local_color = ball_surface_color(&hit, intersection, v);
if (hit.reflective > 0 && trace_depth < MAX_TRACE_DEPTH) {
Vec3f refray = reflection(v, ball_norm(hit.center, intersection));
Color rcolor = calc_color(intersection, refray, EPSILON, FLT_MAX, trace_depth + 1);
float r = hit.reflective;
return (Color) {
r * rcolor.r + (1-r) * local_color.r,
r * rcolor.g + (1-r) * local_color.g,
r * rcolor.b + (1-r) * local_color.b,
};
} else {
return local_color;
}
} else {
return gBackgroupColor;
}
}
int main() {
init_color();
int img_w = 800*2;
int img_h = 800*2;
Picture pic = new_picture(img_w, img_h);
Vec3f camera_pos = {.x = 0, .y = 0, .z = 0};
float tmin = 0.1;
float tmax = FLT_MAX;
for (int x = 0; x < img_w; x++) {
for (int y = 0; y < img_h; y++) {
Vec2i screen_pos = {x, y};
Vec3f v = screen_proj(img_w, img_h, screen_pos);
set_pixel(pic, screen_pos, calc_color(camera_pos, v, tmin, tmax, 0));
}
}
Picture newpic = picture_downscale_2x(pic);
writeBMP("test.bmp", newpic);
delete_picture(pic);
delete_picture(newpic);
return 0;
}
|