1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
module AssemblerInterpreter where
import Debug.Trace
import Data.Function((&))
import Data.Maybe (fromMaybe)
import Text.Parsec hiding (State)
import Text.Parsec.Char
import qualified Data.Map as M
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.State
import Control.Monad.Trans.Class(lift)
interpret :: String -> Maybe String
interpret prog = Nothing
type Parser = Parsec String ()
data Op =
Mov | Inc | Dec | Add | Sub | Mul | Div | Jmp | Cmp | Jne | Je |
Jge | Jg | Jle | Jl | Call | Ret | Msg | End
deriving (Show)
opStrP :: Parser String
opStrP = choice $ map string' [
"mov", "inc", "dec", "add", "sub", "mul", "div", "jmp", "cmp", "jne",
"je", "jge", "jg", "jle", "jl", "call", "ret", "msg", "end"]
opP :: Parser Op
opP = do
s <- opStrP
case s of
"mov" -> return Mov
"inc" -> return Inc
"dec" -> return Dec
"add" -> return Add
"sub" -> return Sub
"mul" -> return Mul
"div" -> return Div
"jmp" -> return Jmp
"cmp" -> return Cmp
"jne" -> return Jne
"je" -> return Je
"jge" -> return Jge
"jg" -> return Jg
"jle" -> return Jle
"jl" -> return Jl
"call"-> return Call
"ret" -> return Ret
"msg" -> return Msg
"end" -> return End
newtype Label = Label String
deriving (Show)
inlineSpace :: Parser Char
inlineSpace = oneOf [' ', '\t']
inlineSpaces = skipMany $ oneOf [' ', '\t']
identifierP :: Parser String
identifierP = do
notFollowedBy opStrP
x <- letter <|> oneOf ['_']
xs <- many (alphaNum <|> oneOf ['_'])
return (x:xs)
labelP :: Parser Label
labelP = do
id <- identifierP
oneOf [':']
return $ Label id
data Stmt = LabelStmt Label | InstrStmt Op [Arg]
deriving (Show)
data Arg = IdentifierArg String | NumberArg Int | StringArg String
deriving (Show)
argP :: Parser Arg
argP = do
inlineSpaces
let identifierArgP = IdentifierArg <$> identifierP
numberP = NumberArg . read <$> many1 digit
stringP = do
oneOf ['\''] :: Parser Char
str <- many $ noneOf ['\'']
oneOf ['\'']
return $ StringArg str
arg <- identifierArgP <|> numberP <|> stringP
inlineSpaces
return arg
stmtP :: Parser Stmt
stmtP = do
let
labelStmtP = LabelStmt <$> labelP
argsP = do
inlineSpaces
oneOf [',']
inlineSpaces
arg <- argP
inlineSpaces
return arg
instrStmtP = do
op <- opP
inlineSpaces
marg <- optionMaybe argP
args <- case marg of
Just arg -> do
targs <- many argsP
return (arg:targs)
Nothing -> return []
return $ InstrStmt op args
inlineSpaces
stmt <- labelStmtP <|> instrStmtP
inlineSpaces
return stmt
commentP :: Parser ()
commentP = do
oneOf [';']
many $ noneOf ['\n']
return ()
stmtLineP :: Parser [Stmt]
stmtLineP = do
inlineSpaces
ms <- optionMaybe stmtP
inlineSpaces
optional commentP
inlineSpaces
case ms of
Just s -> return [s]
Nothing -> return []
progP :: Parser [Stmt]
progP = do
let newlineP = do
newline :: Parser Char
return (++)
stmts <- chainl stmtLineP newlineP []
spaces
eof
return stmts
processLabel :: [Stmt] -> ([Stmt], M.Map String Int)
processLabel stmts = go stmts [] M.empty 0 where
go [] processed labelMap i = (reverse processed, labelMap)
go (instr@(InstrStmt op args):xs) processed labelMap i =
go xs (instr:processed) labelMap (i+1)
go ((LabelStmt (Label ident)):xs) processed labelMap i =
let newLabelMap = M.insert ident i labelMap
in
go xs processed newLabelMap i
data MachineState = MachineState
{ machineRegisters :: M.Map String Int
, machineStack :: [Int]
, machineProgCnt :: Int
, machineOutput :: Maybe String
, machineProg :: [Stmt]
, machineLabels :: M.Map String Int
, machineEnd :: Bool
}
deriving (Show)
type MachineM = MaybeT (State MachineState)
nextInstr :: MachineM ()
nextInstr = do
ms <- lift get
lift $ put (ms {machineProgCnt = machineProgCnt ms + 1})
fetchInstr :: MachineM (Maybe Stmt)
fetchInstr = do
ms <- lift get
let pc = machineProgCnt ms
prog = machineProg ms
if pc >= length prog || pc < 0 || machineEnd ms then return Nothing
else return $ Just (prog !! pc)
setReg :: String -> Int -> MachineM ()
setReg r n = do
ms <- lift get
let regs = machineRegisters ms
lift $ put ms {machineRegisters = M.insert r n regs}
getReg :: String -> MachineM Int
getReg r = do
ms <- lift get
let regs = machineRegisters ms
case M.lookup r regs of
Just n -> return n
Nothing -> fail []
execInstr :: Stmt -> MachineM ()
execInstr (InstrStmt op args) = decodeOp op args
execInstr _ = fail []
getResult :: MachineM String
getResult = do
ms <- lift get
if not (machineEnd ms) then fail []
else case machineOutput ms of
Nothing -> fail []
Just msg -> return msg
runMachine :: MachineM String
runMachine = do
ms <- lift get
instr <- fetchInstr
case instr of
Nothing -> getResult
Just stmt -> do execInstr stmt ; runMachine
execMov :: [Arg] -> MachineM ()
execMov [IdentifierArg reg, NumberArg n] = do setReg reg n
execMov [IdentifierArg r1, IdentifierArg r2] = do
n <- getReg r1
setReg r2 n
nextInstr
execMov _ = fail []
execMsg :: [Arg] -> MachineM ()
execMsg [] = fail []
execMsg args = go args "" where
go [] msg = do
ms <- lift get
lift $ put ms { machineOutput = Just msg }
nextInstr
go ((NumberArg n):xs) msg = go xs (msg ++ show n)
go ((StringArg s):xs) msg = go xs (msg ++ s)
go ((IdentifierArg reg):xs) msg = do
n <- getReg reg
go xs (msg ++ show n)
execEnd :: [Arg] -> MachineM ()
execEnd [] = do
ms <- lift get
lift $ put ms { machineEnd = True }
execEdn _ = fail []
decodeOp :: Op -> [Arg] -> MachineM ()
decodeOp Mov = execMov
decodeOp Msg = execMsg
decodeOp End = execEnd
buildMachine :: String -> Maybe MachineState
buildMachine code =
let
parseResult = runParser progP () "" code
in
case parseResult of
Right lines ->
let (stmts, labels) = processLabel lines
in
Just MachineState
{ machineRegisters = M.empty
, machineEnd = False
, machineLabels = labels
, machineOutput = Nothing
, machineProg = stmts
, machineProgCnt = 0
, machineStack = []
}
_ -> Nothing
interp :: String -> Maybe String
interp code = do
ms <- buildMachine code
let (res, _) = runState (runMaybeT runMachine) ms
res
main = do
print $ runParser opP () "" "msg"
print $ runParser stmtLineP () "" "ret"
print $ runParser progP () "" "ret \n mov a , 12\n uwu: \n ret"
print $ runParser progP () "" "ret ; 123 ; 123\n mov a , 12\n uwu: \n ret"
print $ interp "msg \'hello\'\n end"
|